
Legal Implications in the
Use of Generative AI in

Software Coding

Write a python program that uses simple expressions
to extract email addresses from a text file

Software Developer

EXECUTIVE SUMMARY

PROBLEM STATEMENT & RESEARCH

IMPACT OF GEN AI ON DEVELOPMENT TOOLS

OPEN SOURCE ALTERNATIVES

RECOMMENDATION FOR SERVICE PROVIDERS

TABLE OF

CONTENTS

OBLIGATIONS TO MAINTAIN CONFIDENTIALITY

THIRD PARTY IP INFRINGEMENT WHILE USING GEN AI TOOLS

ABILITY TO ASSIGN IP DEVELOPED UNDER 'WORK FOR HIRE'

PERMISSION TO USE STANDARD DEVELOPMENT TOOLS

1.

2.

3.

4.

CHOOSE WISELY

ATTRIBUTE

ASSURE YOUR CUSTOMERS

COMPLIANCE PROCEDURES

1.

2.

3.

4.

01

02

03

04

05

Executive Summary

EXECUTIVE SUMMARY01

Artificial Intelligence (AI) and Machine Learning (ML) are deeply impacting various areas of
business and technology. This paper talks about the impact and implications of Generative AI on
software coding, and consequently on technology services providers. Coding tools and
processes are evolving significantly with the advent of Large Language Models (LLMs). Proprietary
as well as open source LLMs are being leveraged by such tools to provide greater functionalities
towards improved quality and productivity of the development process. While this is happening,
it is important to carefully review the legal implications for a service provider to discuss the
legality of use of such tools in terms of confidentiality, intellectual property ownership and
infringement.

The paper analyzes terms and conditions of some of the most common generative AI based
tools, on the touchstones of confidentiality, intellectual property ownership and infringement. The
analysis results in the understanding that usage of generative AI tools based on certain legal
parameters may be considered similar to that of non generative AI tools. Accordingly, protection
of confidentiality and ownership of IP in the developed code largely remains the same as with
non-generative AI tools. At the same time, some of the legal issues governing the use of
Generative AI tools are yet to mature. Until such time that the pending issues are addressed and
settled by adjudicating bodies, service providers should use internal policies and procedures to
mitigate risks. Associated policies and procedures should be based on transparency,
authorization, respect for intellectual property, awareness of bias, plagiarism, evaluation and,
consent and attribution.

At the present stage we might not have answers to all the questions or situations that a service
provider may encounter. However, by implementing robust policies and associated
compliances, service providers should be able to minimize all kinds of risks associated with the
use of Generative AI.

Executive Summary

PROBLEM STATEMENT & RESEARCH 02

With the advent of generative AI (commonly referred to as GenAI) tools, the landscape of
standard developmental tools is impacted for good. These tools, almost across the entire
landscape, are evolving to include GenAI based features. These features have the potential to
revolutionize the way code is written. At the same time, their usage is bound to impact legal
aspects such as maintaining confidentiality, intellectual property ownership and infringement.
Service providers are in a situation like never before, where generative AI tools bring in a strong
use case, they also bring in complexities in how a service provider tackles the above mentioned
legal issues.

The above issues are understood in this paper more elaborately in the backdrop of how the tools
offer protection and comfort to service providers. Towards the end this paper tries to bring out
recommendations for service providers for safe and ethical usage of Generative AI tools.

Obligations to
maintain

confidentiality.

Permission to
use Standard

tools.

Open Source
Alternatives.

Third party
infringement

while using Gen
AI tools.

Ability to
assign IP under

work for hire.

Executive Summary

IMPACT OF GEN AI ON
DEVELOPMENT TOOLS03

Standard development tools are those that have widespread use in the software development
community. Such tools are considered as permissible for use by the service providers as they
develop applications for their enterprise customers.

Many such tools have been in use for decades now, leading to a good maturity in their
functionality and understanding amongst large numbers of service providers globally. Let’s see
how GenAI is impacting tool categories:

Category
of Tool

Gen AI
Features*Description Examples**

A comprehensive
development
environment with
features like code
editing, debugging,
version control and
project management

PyCharm or
Jupyter
Notebooks, VS
code, Extensions
such as Githib
Copilot

Code completion,
code generation,
and bug detection

Integrated
Development
Environment
(IDE)

Tools for preparing raw or
unstructured data and
making it acceptable for
a machine learning
model.

Tools to provide relevant
insights from data via
interactive dashboards,
reports, and analytics.

Power-2BI,
Tableau, Looker

Automated and
accelerated BI,
Natural language
interface for
generating and
modifying
visualizations,
summarizing reports
and accelerated
report generation

Data
Visualization
and BI Tools

Testing tools for code
development are
software applications that
help service providers
and testers to write better
code and ensure its
quality. These tools can
be used to automate
testing tasks, identify and
fix defects, and measure
code coverage.

CodiumAI,
Applitools etc.

Test case
generation,
model based
testing,
debugging,
unit-tests.

Testing Tools

Executive Summary

03

We can assess from the above table that generative AI has had a significant inroads with
standard development tools. These tools now exhibit improved features relating to code
refactoring, code generation, model visualization and bug detection to name a few. This trend is
likely to continue, as Generative AI becomes more sophisticated and powerful.

Category
of Tool

Gen AI
Features*Description Examples

Development and
version control tools are
software applications
that help service
providers to write, test,
and manage code.
Development tools
provide developers with
the environment and
features they need to
write code, such as code
editors, compilers, and
debuggers.

Github, Gitlab
etc.

Model visualization
and explanation.

Development
and Version
Control

*This is a non-exhaustive list and there may be other features related to Gen AI.tt
**This is a non-exhaustive list.

Executive Summary

03

In the following section, we have compiled terms and conditions of usage of hosted LLM tools.
This paper utilizes the terms and conditions of widely available tools with the aim to create an
understanding of various features that the terms have to offer with respect to confidentiality and
IP ownership.

A simple overview of terms indicates that terms of each of the hosted tools have been updated
to cater to the functionality of Generative AI. Terms such as opt outs and IP ownership specifically
relate and describe gen AI specific terms which provide cushion to a service provider. More
particularly, the terms are analyzed for enterprise versions of tools, based on following
parameters:

When developing code for a client, it is important to take steps to protect the confidentiality of
client's information. This is especially important when using third party tools, which may have
access to the client's data.

Some steps that code developers generally take to maintain confidentiality across development
engagements are as follows:

Use a secure
environment to
develop the code:

This could include
using a secure cloud
environment or a
virtual private
network (VPN).

Have a plan for
responding to
security breaches:

If a security breach
does occur, have a
plan in place for
how to respond.

Encrypt the code:

This will make it
more difficult for
unauthorized
individuals to
access the code.

Restrict access
to the code:

Only authorized
individuals should
have access to the
code, and access
should be logged.

Monitor for
security breaches:

Use security tools
to monitor for
potential security
breaches.

OBLIGATIONS TO MAINTAIN CONFIDENTIALITY

Executive Summary

03

Generative AI tools, such as Amazon Code
Whisperer, Replit, Tabnine Open AI, and GitHub
Copilot, use content, such as code snippets,
comments, and content from files open in the
IDE, to provide suggestions to users. This content
is processed by the service solely to provide and
maintain the service. As per the terms of use for
enterprise, these tools may or may not retain
client data for training.

Some of these tools may collect and use
client-side telemetry and usage metrics for
service improvement purposes. Most tools use
client data for non-enterprise versions for
training their models. In their enterprise versions,
most of these generative AI tools provide
options to not use their data for training
purposes. Service providers have to be careful in
selecting their tools on the basis of tier and
options the tool provides for safeguarding
confidentiality.

The difference between generative AI tools and
non-generative AI tools is that generative AI
tools send data to their large language models
(LLMs) to receive a suggestion. Therefore, the
data that was previously stored locally is now
accessed by the LLMs for milliseconds to provide
suggestions. This exposure of milliseconds has
led to some hesitation in the industry, as it may
be argued that this exposure leads to a breach
in confidentiality. However, it is important to
understand how these generative AI tools
function. These tools have been pre-trained on
large datasets and accordingly provide code
suggestions. They provide suggestions based
on the interrelation of the various sets of code
lines. The underlying LLM model ascertains the
interactions between the preceding code lines
to predict what could be the best suitable next

Executive Summary

03

set of lines. While doing so, the LLM model may provide multiple suggestions which would fit the
technical character of the preceding code lines. It is quite possible that some of the suggestions
provided by the tools may not pass muster and may not be relevant for a particular use case. So
in each case, code developers would take the decision of accepting or rejecting a suggestion
based on what suits best. The technical behavior of LLMs could be understood as that the actual
code or confidentiality of the code is not hampered by these tools at any time. The entire code is
sent as input to the LLM and the LLM then based on the inter-relation of code lines and on other
parameters suggests the next set of lines. The concept of confidentiality in the realm of client and
service provider, means that anything designated as confidential, should not be used in a
manner other than what it is authorized for. In this unique case of gen AI tools, we can say that
tools provide us with options where we can restrict the access of our codes solely to provide
suggestions and the tools would not use our information to train their models. All these features
are majorly made available in the enterprise versions. Once these features are enabled,
confidentiality of the actual code is not hampered or affected by these tools. Accordingly, it could
be said that though the functioning of gen AI tools may be considered different from non-gen AI
tools, use of gen AI tools by service providers to deliver services may not affect the confidentiality
of the code, if the service provider chooses the right tier and opt out options.

In conclusion, while there is some risk of confidentiality breaches associated with the use of any
types of tools including generative AI tools, these risks can be mitigated in the same manner as
they were being mitigated for non-gen AI tools. Service providers can choose LLM tools wisely and
also take due care in selecting the right tier as well as opt out options. This risk is severely
curtailed in cases where open source LLM models are used in designated environments. Having
said that, a service provider should come up with best choices, safeguards in terms of policies
and checks so as to have sufficient support for protecting confidential information. This paper
provides information about suitable policies in the recommendations section.

Executive Summary

03

Specifically, with regard to hosted Gen AI tools, most of the terms of such tools have been
categorical that the ownership and responsibility of the lines of code suggested by the tool are
that with the user. Let us take the case of GitHub Copilot, a hosted LLM product. The terms of use
anoint the user of the tool as the creator and author of the code, however the matter is
sub-judice, as GitHub is subject to litigation on the question of the ownership of the source
materials of code that it has trained its models on.

It is noteworthy to mention that a class action lawsuit is pending adjudication before the US
Federal Court of the State of California, on behalf of GitHub users against GitHub, Microsoft and
Open AI. The contention being that GitHub Copilot has trained its model on public repositories
that were made public under open source licenses that require attribution to the author. GitHub
has denied this of course and claims that there is no specific code that is being copied. To its
defense GitHub is using the argument of ‘fair use’ as the reason for not attributing the authors of
the code, should the previous argument not fly. This case will majorly be argued on concepts of
substantial similarity of copyright law.

The test of AI generated code being substantially similar to the code it was trained on is yet to be
answered. Most of the tools state that the coders may use filters to check for duplication or
similarity. Some of the tools have offered to indemnify if their suggested code infringes any third
party’s IP.

Accordingly, to an extent developers can utilize the inbuilt features along with the indemnification
guarantee provided in the terms of use, to make themselves safe from any form of infringement.
However, the judgment of the GitHub copilot case will remove much of the doubts that are
currently prevailing over the use of generative AI tools.

In this phase of ambiguity and considering the strong use case of gen AI tools, service providers
should focus on netting mechanisms such as open source software compliance review to
pre-emptively catch substantial risks. This interim solution has been substantiated in the
recommendation section of this paper

THIRD PARTY IP INFRINGEMENT WHILE USING GEN AI TOOLS

Executive Summary

A work for hire contract is a legal agreement in which the creator of a work assigns all rights in the
work to the hiring party. This means that the hiring party owns the copyright, trademark, and
other intellectual property rights in the work.

In the context of software development, a work for hire contract is often used when a company
hires a contractor to develop code for them. The work for hire contract ensures that the company
owns all rights in the code, including the right to sell, distribute, and modify the code.

Considering the current scenario of tools, and as per the terms of use of commonly used tools all
generative AI tools assign the IP in the code to the developer. Meaning thereby that the service
provider owns the developed code. Depending on the contractual obligations with the client, the
service provider can transfer the ownership of the code to the client.

All generative AI tools including products and open source both, provide the same chain of
assignment as what was provided by non generative AI tools. On perusal of the terms of use of
most of the available generative AI tools, we note that they possess the means to assign IP to the
developer.

Standard tools have long been used in code development to improve productivity, efficiency,
and quality. Generative AI tools are simply a new type of standard tool. They do not change the
fundamental nature of code development, and they do not absolve service providers of their
responsibility. Service providers still need to understand the problem they are trying to solve,
come up with a solution, and then implement that solution in their code. They also need to test
the code thoroughly to make sure that it is working correctly. The features disclosed in the above
table clearly indicate that:

The codes generated by these tools are to be considered the intellectual property of
the creator. The tools are simply providing suggestions, and the user is still responsible
for the entire code. The user is also responsible for orchestrating the code together,
including managing repositories and stitching the entire code as one piece and most
importantly testing the code. Gen AI developed code will have to be tested thoroughly
before it gets implemented, as the code suggested by gen AI tools may be marred by

03

1

ABILITY TO ASSIGN IP DEVELOPED UNDER ‘WORK FOR HIRE’

PERMISSION TO USE STANDARD DEVELOPMENT TOOLS

Executive Summary

03

While most of the above points have already been described in detail above, an overview of
these points signifies that the tool providers in case of enterprise versions, have largely provided
options for its users to keep their information safe and secure even after incorporating gen AI
features. As a matter of fact, any service provider who chooses to use any AI development tool
has to take care of the intellectual property developed, the confidential obligations and that the
developed code does not infringe any third party intellectual property. With regard to the
permissions for using these tools, we note that it is an understood fact that all service providers
use various types of tools to develop codes for clients. In occasions where there is no contractual
obligation of tools disclosure, service providers do not seek permission of the client to use such
tools. Albeit, in situations where the service provider requires usage of tools which might affect
client confidentiality, intellectual property ownership or would be against any policy of the client,
service providers would need client’s permission for using such tools. In cases where the service
provider uses tools which provide safeguards such as opt outs and tier protection for enterprise
versions, service providers do not need specific permission from the client, as it is common
practice in the information technology industry that the service provider will use some tool to
develop code, provided that the confidentiality and IP ownership is not affected.

Furthermore, with the advent of open source tools which can be used locally, service providers
have the option of using tools which are not hosted over the internet. This local hosting of LLM will
enable the service providers to easily transfer ownership of the generated code to its clients, in a
manner similar to using non-gen AI tools.

bugs and may give unoptimized results. The code is not original to the tool, and it is not
protected by copyright law.

The tools in their enterprise versions provide the user with options to select the right tier
and opt out options so that the tool does not collect or store any confidential
information or personally identifiable information (PII).

The tools are bound by their respective terms of use, which typically include provisions
that protect the privacy of users and their data. These terms of use typically state that
the tools will not collect or store any personally identifiable information without the
user's consent.

2

3

Executive Summary

03

Based on the analysis above we note that the nature of use of generative AI tools is largely similar
to that of the existing tools. Though generative AI, when incorporated in the tools, brings in the
complexity of using large language models, the usage shall remain the same as any standard
tool. These tools are already pre-trained with terabytes of data and therefore result in improving
the overall code development.

As with any standard tool, permission may be required to use generative AI tools in cases where
the use affects the client’s confidentiality and right to own IP. For example, if a tool exposes code
to third parties, permission may be required to use such a tool. However, in general and based on
the above table, permission to use generative AI tools should flow in the same way as permission
to use other standard tools, i.e. where the code is exposed and confidentiality and intellectual
property rights are affected, permission should be sought from the client. In all normal scenarios,
where gen AI tools maintain confidentiality and provide ownership of IP, no permission may be
sought.

The use of generative AI in standard development tools is clearly beneficial, as it helps save time
and effort, improves the quality of code, and makes it easier to develop and deploy AI-powered
applications to name a few. As a result, it is no longer a question of whether a tool provider should
use generative AI. Rather, it is a question of how to best incorporate generative AI into tools to
provide the best possible tool for developers. To conclude, standard development tools can no
longer be separated from the influence of GenAI.

Accordingly, the research in this paper provides a clear pathway for the service providers to use
gen AI tools for code development. However, as we wait for all the parameters to factor in, and as
we wait for clarity on some of the legal issues, service providers may implement policies and
procedures to curb the risk associated with these tools. While doing so, service providers also
need to ensure that clients are assured to the maximum extent, and that they should have some
form of transparency.

Executive Summary

04

By leveraging open-source LLMs, developers and service providers can circumvent the
limitations of traditional LLM APIs and paid services, gaining access to a range of distinct
advantages that align with the evolving needs of the modern technological landscape. These
models empower service providers with greater control and adaptability, enabling them to
customize and fine-tune the models to suit their specific requirements. Additionally,
open-sourced LLMs eliminate vendor lock-in, allowing for seamless integration into diverse
platforms without the constraints imposed by a single provider. Open-source models provide
several benefits that make them highly desirable for programming and coding tasks. These
benefits include:

Flexibility and Customization: Open-source models allow service providers to have
full control over the model architecture, parameters, and code. This flexibility enables
customization based on specific application requirements and helps service providers
fine-tune the model for enhanced performance.

Transparency and Code Review: Open-source models provide complete access to
the underlying source code, allowing service providers to review, understand, and audit
the code. This transparency ensures trust and enables the identification and mitigation
of potential vulnerabilities or biases.

Reduced Dependence on Third-party Providers: By relying on open-source models,
service providers are not tied to a single provider or service. They have the freedom to
use the model independently without relying on proprietary APIs or paying for
commercial services. This reduces dependence and vendor lock-in risks.

Access to a Vibrant Community: Open-source models attract a large and active
community of service providers who actively contribute to their improvement and
maintenance. This community support fosters collaboration and enables service
providers to learn from and share their experiences with peers, leading to continuous
improvement and innovation.

Cost Effectiveness: Open-source models are generally available free of charge,
reducing the financial burden for service providers and organizations. Additionally,
open-source models can be deployed on local hardware or cloud infrastructure,
providing cost-effective solutions compared to paid services.

Enhanced Data Security and Privacy: Open-source models allow service providers to
process sensitive data locally, reducing the need to transfer data to third-party servers.
This enhances data security and privacy, mitigating concerns related to data breaches
or unauthorized access.

Customized Development Environment: Open-source models can be integrated
seamlessly into a developer's preferred programming environment, enhancing

OPEN SOURCE ALTERNATIVES

2

3

4

5

6

7

1

Executive Summary

04

productivity and ease of use. service providers can leverage their existing tools and
workflows, resulting in a more efficient development process.

Latency: Latency refers to the delay between the input and output of a system.
Open-sourced models can offer lower latency as they can be run locally, reducing the
need to communicate with external servers. This can result in faster response times,
especially for real-time applications. On the other hand, large language model (LLM)
APIs and paid services may introduce higher latency due to the need for external
communication and processing, which can impact real-time performance.

Predictability: Open-sourced models can provide more predictability as developers
have full visibility and control over the model's architecture, training data, and
parameters. This allows for better understanding of the model's behavior and
performance. In contrast, LLM APIs and paid services may offer less predictability as the
inner workings of the models are often proprietary and not fully transparent to the
users, which can make it challenging to anticipate their behavior in all scenarios.

Ease-of-usage: Open-sourced models can offer ease-of-usage through their
flexibility and adaptability to specific use cases. Developers can customize and
fine-tune these models to suit their needs. However, LLM APIs and paid services may
provide a more user-friendly experience by offering ready-to-use solutions and
seamless integration, which can be advantageous for developers seeking quick and
convenient access to AI capabilities.

Vendor Lock-in: Open-sourced models generally avoid vendor lock-in, as they can be
freely used, modified, and integrated into various platforms without being tied to a
specific provider. In contrast, using LLM APIs and paid services may lead to vendor
lock-in, as developers become dependent on the specific features, pricing, and terms
of the service provider, potentially limiting their flexibility to switch to alternative
solutions.

Subject Matter Expertise & Manual-Resources: Open-sourced models may require
more subject matter expertise and manual resources for training, fine-tuning, and
maintenance. Developers need to have the knowledge and skills to work with these
models effectively. Conversely, LLM APIs and paid services can reduce the need for
extensive expertise and manual resources, as they offer pre-trained models and
automated services that require less hands-on intervention.

Financial objectives such as Valuation (LLMs as assets): From a financial perspective,
open-sourced models can contribute to the valuation of a company or project by
providing valuable intellectual property and assets that can be leveraged for various
applications. These models can also enhance the overall technological capabilities
and competitiveness of the organization. On the other hand, LLM APIs and paid services

8

9

10

11

12

13

may involve licensing fees, which can impact the financial objectives and valuation of
a company. Additionally, the use of proprietary LLMs may limit the ownership and
control of the underlying AI assets.

Executive Summary

04

The benefits described have an operational impact and also provide long term solutions to
issues discussed in this paper. As we decipher from the above mentioned pointers Open-source
LLMs offer more flexibility and control over the code generation process. Service providers can
fine-tune and customize the models to suit their specific needs, resulting in improved accuracy
and performance. Moreover, Open-source LLMs provide opportunities for innovation, enabling
service providers to push the boundaries of what is possible with LLMs. However, developing and
maintaining Open-source LLMs require significant resources, expertise, and ongoing effort.
Service providers need to invest in infrastructure, data collection, training, and model evaluation
to ensure optimal performance over time. On the other hand, API based tools and LLM product
offerings provide convenience and ease of use, especially for service providers who want to
quickly integrate LLM capabilities into their applications or workflows. APIs abstract away the
complexity of model development and maintenance, enabling service providers to leverage
pre-trained models and additional features offered by the tool provider. API based tools and tool
offerings also ensure compatibility across platforms and programming languages. However,
using such tools may come with limitations in terms of customization and control. Service
Providers are dependent on the model updates and availability, which may be subject to
changes or limitations. Additionally, usage of such tools is also associated with costs, especially
for high-volume or commercial use.

Open-source LLMs offer a compelling set of legal advantages that extend beyond their technical
merits. Their inherent transparency and collaborative nature foster trust, facilitate knowledge
sharing, and encourage the creation of more robust and reliable AI solutions. This open-source
approach eliminates the need for complex licensing agreements with third-party vendors,
reducing the risk of contractual disputes and ensuring companies retain control over their data
and intellectual property. Additionally, open-source LLMs minimize the risk of patent infringement
claims or copyright lawsuits, as the code is readily available for inspection and modification.

As organizations evaluate their specific needs, resources, and priorities, they must carefully
consider the implications of choosing between custom models and APIs. Custom models offer
greater control, customization, and long-term adaptability, while APIs provide convenience, rapid
integration, and cost-effectiveness. Accordingly, open-source LLMs present a compelling
alternative to traditional LLM APIs and paid services, providing a range of distinct advantages that
align with the evolving needs of service providers and organizations. These models empower
greater control, adaptability, and predictability for service providers while contributing to the
valuation of companies and projects. As the AI landscape continues to evolve, open-source LLMs
are poised to play an increasingly transformative role in shaping the future of artificial
intelligence.

Executive Summary

RECOMMENDATION FOR
SERVICE PROVIDERS05

The ongoing flood of generative AI tools and their sheer scale of their applicability has created an
environment where adoption of AI is no longer a question. It is clear that we are at the cusp of an
era where AI will permeate all cognitive and knowledge based work. The task is to steer and
navigate it so that it aids and improves human effort, without marginalizing the human creators.
Based on the analyses on the issues of confidentiality and ownership of IP in hosted LLM tools and
open source LLM, discussed in this paper, it is noteworthy to mention that service providers
depending on the choice of LLM tools, may or may not need additional permissions to use
generative AI tools. Permissions sought for use of general standard developmental tools may be
considered sufficient for use of gen AI based tools, where client confidentiality is protected. This
includes the tools using enterprise versions that have an additional layer of protection for
confidentiality. Having said the above, as a matter of abundant caution, service providers are
advised to seek explicit permission from clients when using these LLM based tools.

While there are multiple issues related to hosted LLM tools, recently with the advent of open
source tools these issues are almost non-existent. Open source tools can be used in any
environment as the service provider or client may desire. Though these open source tools may
feel less efficient or workable, their utility and ease of use trumps hosted LLM tools.

It is also important that some of the legal concepts with regard to usage of LLM tools are yet to be
clearly laid down by courts and governments. In the absence of clarity on these legal concepts, it
is of utmost importance that service providers take steps to mitigate the risks associated with
these tools. While some of the risks could be mitigated with existing policies and procedures, for
most part service providers will have to come up with additional protections in the form of
choosing the right kind of tools, implementing the right kind of policies, providing attribution
wherever applicable, and most importantly comforting its customers. Accordingly, the below
points cover aspects for a Service Provider to take into consideration while using gen AI tools.

As the field of generative AI grows with time, we will see the advent of more and more tools which are
based on generative AI features. It will become imperative for a service provider to choose wisely from a
pack of tools so that it enjoys the best of security, IP protection and privacy. When integrating large
language models (LLMs) into service offerings, service providers must make a decision i.e. open-source
or LLM-based product tools. Both options offer distinct advantages and present nuanced trade-offs,
necessitating a data-driven approach to selecting the optimal solution. Some of the decision making
aspects for choosing either open source LLM models or LLM based products Considering specific needs
and priorities:

CHOOSE WISELY

Customization and Control:

Open-source: Offers granular control over the model's architecture, training data, and
biases, enabling bespoke solutions for unique tasks and data formats. This flexibility
demands dedicated technical expertise and resources.

LLM-based tools: Provide readily available functionalities with limited customization
options. While this expedites deployment, it restricts tailoring to specific needs.

Technical Expertise and Resources:

Open-source: Requires substantial AI expertise for setup, training, and maintenance,
potentially creating a barrier for less tech-savvy service providers.

LLM-based tools: Offer user-friendly interfaces and minimal technical overhead,
reducing reliance on internal AI expertise. This facilitates smoother integration for
resource-constrained teams.

Budgetary Constraints:

Open-source: Generally cost-effective, with minimal licensing fees or ongoing
subscriptions. However, additional costs may arise from hardware, infrastructure, and
training resources.

LLM-based tools: Often involve licensing fees and subscriptions, potentially leading to
higher total costs. However, these can be offset by reduced development time and
technical expertise requirements.

Performance and Feature Requirements:

Open-source: May offer less fine-tuned performance compared to specialized LLM
tools for specific tasks. However, open-source models can be optimized for specific
tasks through custom training.

LLM-based tools: Often focus on specific industries or tasks and offer superior
performance for those scenarios. However, they may lack the flexibility of open-source
models for general tasks or unique needs.

Executive Summary

05

Finding the Optimal Balance:

3

4

2

1

The ideal LLM solution lies in balancing control, customization, and ease of use within your specific
context. This entails meticulously assessing your needs, resources, and budget constraints.
Consider hybrid approaches utilizing open-source models combined with pre-built tools for
specific functionalities. Conduct pilot tests with both options using actual data and tasks to
objectively evaluate their suitability. Seek guidance from industry experts and consultants to
navigate the complex LLM landscape and optimize your integration strategy.

The terms of service: It is important to be comfortable with terms such as data
retention, tenancy, code usage for training etc. Service providers need to ensure
separate tenancy, no code retention, and transfer of ownership of IP.

The security features: Service providers need to ensure that the tool should have
strong security features to protect the code from unauthorized access. This includes
features such as encryption, access control, and auditing.

The privacy policy: The privacy policy of the tool should explain how the company will
collect and use personal data. It is important to be comfortable with the privacy policy
before using the tool.

Executive Summary

05

By making a well-informed decision based on a comprehensive understanding of service needs
and available LLM solutions, service providers can unlock the transformative potential of LLMs and
drive growth from service offerings. While choosing within LLM based product tools, service
providers choice of tools may be based on the following:

By carefully considering these factors along with their sub factors such as code usage, tenancy,
data encryption, data retention, a service provider can choose a generative AI tool that will help
them protect their confidential information and IP, while also providing them with the technology
they need to be successful. As the field of generative AI matures, it is important for service
providers to be aware of the risks and challenges associated with using these tools. By choosing
wisely and taking the necessary precautions, service providers can mitigate these risks and
ensure that they are using generative AI tools in a safe and secure manner.

1

2

3

The AI model underlying a standard developmental tool may be trained on source code
available in public code repositories, for example, open-source licensed code available on
GitHub. The AI model becomes more and more efficient and accurate as it gets trained on these
code sets. There are many intellectual property rights and ownership issues which are yet to be
resolved. Accordingly, for Service Providers to not get entangled in these issues or atleast to be
able to minimize liability and risks and in an ideal scenario it is important that service providers
make plans to attribute the generated code to such licenses or code owners which the respective
tools provides to them. This approach will create a balance between service providers and IP
owners i.e. the coders/content creators whose code is used as a base by generative AI tools, by
devising a system that allows for attribution and credit to the IP owners. Governments across the
globe are trying to create AI governance frameworks which would include aspects of attribution.

ATTRIBUTE

Prepare policies for the usage of generative AI technology: These policies should
outline the ethical and responsible use of generative AI tools. They should also include
procedures for handling potential risks, such as bias and privacy violations.

Use client data responsibly: Collect the data that you need and use it only for the
purposes that you have disclosed to customers. This means avoiding collecting
excessive data or using data for purposes that are not disclosed.

Protect data security: Take steps to protect the security of the data that you collect,
such as using encryption and access controls. This will help to prevent unauthorized
access or disclosure of data.

However, we also note that at present providing attribution may only happen once the tool
providers come up with a way to attribute. None of the tool providers currently take the path of
providing attribution in their code suggestions. Accordingly, service providers should be
prepared so that once the tool providers start giving the option to attribute, they should also pass
the credit to the original coder.

Executive Summary

05

1

2

3

A service provider should be transparent about its generative AI tool usage practices. It should let
customers/clients know what data you (and the LLM tools) collect, why you collect it, and how you
use it. This information should be easily accessible and easy to understand. This includes
disclosing the following:

ASSURE YOUR CUSTOMERS

The type of data that you collect,
such as text, code, or images

How you will use the data, such
as generating code or creating
new applications

The third-party vendors that you
may share the data with.

The purpose for collecting the data,
such as training a generative AI
model or generating code

01

0203

04

Transparency: Service providers should be transparent with their team and clients
wherever applicable, about their use of generative AI tools. Use of any open source
tools may be exempted from this

Authorization: Service providers should make a graded mechanism where developers
can use different types of LLMs based on their risk analysis, and wherever applicable
seem authorizations within the org and/or from the client.

Respect for Intellectual Property: Developers of service providers should be respectful
of the intellectual property rights of others. They should not use generative AI tools to
generate code that infringes on the copyrights of others.

Awareness of Bias: Developers should be aware of the potential for bias in generative
AI models, these may include automation bias, bias based on existing dataset, among
other types of bias. They should be sure to review the code generated by generative AI
tools for bias and to make any necessary corrections.

Executive Summary

While the use of Generative AI may not warrant seeking additional permissions from the Client
regarding use of such tools for providing services or deliverables, it is of utmost importance that
we choose the right kind of tools, implement the right kind of policies, provide attribution
wherever applicable, and most importantly comfort our customers. By creating and following
compliance procedures based on the below concepts, service providers would be able to use
generative AI tools responsibly for their clients as well as for their internal development:

05

1

2

3

4

COMPLIANCE PROCEDURES

Plagiarism Evaluation: Service providers should endeavor to use tools which perform
OSS review once the code is complete. This step will help in netting at least OSS licensed
codes, resulting in further minimization of risk of using infringing code.

Consent & Attribution: Service providers may have mechanisms in place to seek
consent from OSS licensed code owners. Where possible, Service providers should
endeavor to provide attribution to the fullest extent possible.

Executive Summary

05

By following these set of considerations, service providers can use generative AI tools in a
professional and responsible manner in a work for hire context. While choosing the best possible
generative AI tool for each use case, a service provider can very well utilize the various security
features available in each tool, or they may use Open source tools to its benefit and be free from
the legal issues inherently present in API based tools.

5

6

